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In this paper, the definition of a super sextet is given, the concept of a 
KHF-graph is proposed, and some of the topological property theorems of 
KHF-graphs are developed using a similar method as [1]. And so Ohkami- 
Hosoya conjecture [2] is proved rigorously. 
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1. Introduction 

CAS (Clar aromatic sextet) theory [3] is an interesting topological theory of 
benzenoid hydrocarbons. Because it is believed to have an acceptable quantum 
chemical justification [4-7], this theory has recently attracted some attention. 
The following conjecture plays a key role [2]: 

Ohkami-Hosoya conjecture. For any benzenoid hydrocarbons (polyhex graph 
[18]) G, which has at least one Kekul6 structure (or Kekul6 pattern), there exists 
a one-to-one correspondence between Kekul~ and sextet patterns. 

In [1], we have investigated this problem, the concept of generalized sextet 
patterns, and proved the one-to-one correspondence between Kekul6 and general- 
ized sextet patterns. However, it is not the one-to-one correspondence in the 
same sense as in the Ohkami-Hosoya conjecture, since our concept of a general- 
ized sextet pattern iLs different from their concept of a sextet pattern. In the present 
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paper, the definition of  a super sextet is given, some of the topological property 
theorems of KHF-graphs are developed, and the Ohkami-Hosoya conjecture is 
proved. 

2. KHF-graphs and some of their topological properties 

First of all, we give the following definitions: 

KHF-graph. If  a finite connected graph on the hexagonal lattice (honeycomb 
lattice) has at least one decomposition into 1-factors [9, 10] (or at least a Kekul6 
pattern [2]), then this connected graph is called a honeycomb fragment graph 
with Kekul6 pattern (a Kekul6 honeycomb fragment graph, simply a K H F  graph). 
In Fig. 1, a, c, e, f and g are KHF-graphs, but b and d are not. Although b and 
d are honeycomb fragments, they haven't any Kekul6 pattern. 

Localized bond. In all Kekul6 Patterns of a KHF-graph, a bond is maintained 
(either a single or double), then it is called a localized bond [11]. 

Obviously, in a KHF-graph, an edge starting from an end-vertex (i.e. a vertex of 
degree one) must have a localized bond. If  all the bonds in a KHF-graph are 
localized, such a KHF-graph is trivial (see Fig. la) in our discussion. From now 
on, without loss of generality, we only consider KHF-graphs in which not all 
bonds are localized, unless otherwise stated. 

Basic circuit. If  within a circuit of a KHF-graph there aren't any other circuits, 
then this circuit is called a basic circuit. Obviously, the number of edges of any 
basic circuit is even. In Fig. le, there are two basic circuits and in Fig. if, there 
are fourteen basic circuits. 

Conjugated circuit. In a given Kekul6 pattern of a KHF-graph, if a circuit with 
h edges has a set of h/2 conjugated double bonds then this circuit is called a 
conjugated circuit. If  the extreme right vertical edge of a conjugated circuit is a 
double bond edge, then this circuit is called a right conjugated circuit, otherwise, 
it is called a left one. 

a b c d e 
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Fig. 1. KHF and non-KHF graphs 

Loca l i zed  bonds  



Topological properties of KHF-graphs 449 

Theorem 1. In any Kekuld pattern of a KHF-graph without vertices of degree one, 
there is at least one basic circuit which is a conjugated circuit. 

Proof By using Euler's formula about connected planar graphs, for any KHF- 
graph G, we have [9,10,12] 

IEI=I Vl-l+f, if-0) (1) 
where I VI is the number of vertices of the KHF-graph G, I E I is the number of 
its edges, and f is the number of its basic circuits. If a basic circuit in the 
KHF-graph isn't a conjugated circuit, the number of single-bond edges on this 
basic circuit must be at least two plus that of the double-bond edges. 

Obviously, every edge of a KHF-graph belongs to at most two basic circuits. If  
none of the basic circuits in the KHF-graph is conjugated, then 

Es - E~ __f, (2) 

where Es is the number of single-bond edges in the KHF-graph, and Ea is that 
of double-bond edges. 

From (1) and (2), 

E~-E~>-IEI-IVI+I. (3) 

Since 

] E I - E s = E a ,  

and 

2Ea = I VI, 

(3) becomes 

0 -- 1 (4) 

From this contradiction, Theorem 1 is proved. Q.E.D. 

Theorem 2. For any KHF-graph G (without vertices of degree one), there is one 
and only one Kekulg pattern in which all the conjugated circuits are right (left). 

Proof From Theorem 1, in a given Kekul6 pattern of G, there exists at least one 
conjugated circuit. If  some of the conjugated circuits are left ones, on one of 
these left conjugated circuits changes the single-bonds into the double-bonds and 
vice versa. As a resulk 

(a) the vertical double-bond edges on this circuit shift right; 
(b) this circuit becomes a right conjugated circuit. 

In the transformed Kekul6 pattern, if there are still left conjugated circuits, choose 
one of them and prc~ceed with the interchange of single and double bonds again. 

Because of the finiteness of the KHF-graph, it is impossible that the shift process 
in (a) is infinite. Finally, we can obtain a Kekul6 pattern of G, in which all the 
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conjugated circuits are right ones. Now, let us prove the uniqueness of the result. 
Assume that there are two different Kekul6 patterns of G, in which all the 
conjugated circuits are right ones. Denote the two patterns by K1 and K2, 
respectively. 

Let the two patterns overlap completely. Delete the coincident double-bond edges 
(together with their endpoints). In the residual subgraph, every vertex must be 
an endpoint of a double-bond edge of K1, and be also an endpoint of a double- 
bond edge of K2. But these two edges can't be coincident with each other. Thus, 
if a~ is a vertex of the residual subgraph, and a~a2 is a double-bond edge of K1, 
then a2a3 is a double-bond edge of/s  (a3 is not coincident with a,), a3a4 is a 
double-bond edge of K1 (a4 is not coincident with a 2 )  , and so on. Obviously, 
al, a3, a4, . . .  also belong to the residual subgraph. 

Finally, an edge am_~a,, must be a double-bond edge of K1, and areal a double- 
bond edge of  K2, otherwise it would be contradictory to the finiteness of KHF- 
graph. Thus, the circuit ala2a3a4"'" a,, lama~ is a conjugated circuit either in 
K~ or in K2. But in Ka and K2, the arrangements of the double-bonds on the 
circuit are different from each other. Obviously, in one of the two patterns, there 
exists a left conjugated circuit. This is contradictory to the assumption on K1 
and K 2. Hence, K1 is identical with K2. This proves Theorem 2. 

For some KHF-graphs with vertices of degree one, their Kekul6 patterns may 
contain neither right conjugated circuits nor left ones, provided all the bonds in 
these KHF-graphs are localized. 

As a consequence of Theorem 2, the following statement is valid. 

Consequence. For any KHF-graph, with or without vertices of degree one, there 
is one and only one Kekul6 pattern which doesn't contain any left (or right) 
conjugated circuits. 

3. Definition of a super sextet and one-to-one correspondence between Kekul~ 
and sextet patterns 

We start with some definitions. 

Proper sextet [2]. A right conjugated six-membered circuit is called a proper sextet. 

If two right conjugated circuits haven't any common edges, then the two right 
conjugated circuits are separated from each other. 

In Fig. 2a, there are two right conjugated circuits 1, 2, 3, 4, 5, 10, 1 and 1, 2, 3, 
4, 5, 6, 7, 8, 9, 10, 1. Since they have some common edges, they are not separated 
from each other. 

Using the following program, step by step, among the numerous right conjugated 
circuits of a given Kekul6 pattern, we can find a special set of separated right 
conjugated circuits, called a set of s-separated right conjugated circuits. 

Step 1. Let all the right conjugated basic circuits (including all the proper sextets) 
be s-separated right conjugated circuits. 
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Fig. 2. S-separated right conjugated circuits and sextet patterns 

Step 2. In addition to the preceding determined s-separated right conjugated 
circuits, another right conjugated circuit is also a s-separated right conjugated 
circuit if it is separated from all the preceding determined s-separated right 
conjugated circuits, and within it there exist no other right conjugated circuits 
which are separated from all the preceding determined s-separated right conju- 
gated circuits. 

Step 3. In the given Kekul6 pattern, if there are still some other right conjugated 
circuits which are separated from the preceding determined s-separated right 
conjugated circuits, reapply step 2 until we find a unique complete set of s- 
separated right conjugated circuits. 

In Fig. 2a-d, the set of s-separated right conjugated circuits are marked with 
bold line. 

Definition of a proper super sextet. A s-separated right conjugated circuit with 
more than six vertices is called a proper super sextet. If in a proper super sextet, 
we draw a closed curve and delete all the double-bonds, we obtain a super sextet 
[2]. 

Definition of sextet pattern. For a given Kekul6 pattern of a KHF-graph, in each 
proper sextet, draw a circle (i.e. transform all the proper sextets into aromatic 
sextets [2]), in each proper  super sextet, draw a closed curve, and delete all the 
double-bonds of this Kekul6 pattern. Thus, we can obtain a sextet pattern, which 
corresponds to the given Kekul6 pattern. 

For example, the sextet patterns corresponding to Fig. 2a-d are shown in Fig. 
2e-h, respectively. 



452 He Wenjie and He Wenchen 

Theorem 3. For any given orientation of any KHF-graph G, there exists a one-to-one 
correspondence between Kekuld and sextet patterns 

Proof From the definition o f  a sextet pattern, for any Kekul6 pat tern o f  G there 
exists one corresponding sextet pattern. Conversely,  for a sextet pat tern of  a 
given KHF-graph ,  we can prove that there is one and only one Kekul6 pattern 
corresponding to the sextet pattern. In this given sextet pattern, t ransform all the 
circles and the other closed curves into the proper  sextets and the p roper  super 
sextets (i.e. a complete set o f  s-separated right conjugated circuits). What  remains 
can ' t  contain any other s-separated right conjugated circuits. Furthermore,  there 
can ' t  exist any right conjugated circuits in the remainder.  ( I f  they existed, they 
would be separated f rom all the s-separated right conjugated circuits, and so 
there would  exist s-separated right conjugated circuits in the remainder.)  Accord-  
ing to the consequence o f  Theorem 2, the Kekul6 pattern o f  the remainder  must 
be unique. Thus, Theorem 3 holds. 

Specifically, in the case o f  benzenoid  hydrocarbons ,  the above p r o o f  becomes 
the p roo f  o f  the O h k a m i - H o s o y a  conjecture. 

4. Discussion 

In this paper,  we define "super  sextet". It seemed to be one o f  the most  significant 
open  problems on the topological  theory o f  benzenoid  systems [13-15].  Our  
definition o f  sextet pat tern agrees with that o f  other  authors '  [2, 8] in the case 
o f  ca ta-condensed and per i -condensed benzenoid  systems. But our  definition 
includes the case o f  corona-condensed  benzenoid  system [16, 17], and other  more 
general systems. Hence it is not  only compatible  with other  authors '  work 
[2, 3, 8, 13-15], but  also more  advantageous.  
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